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Motivation

I It is a reformulation of Newton‘s mechanics

I Based on least action principles (Calculus of variations)

I Allows to work with different fields, such as the electromagnetic field in one
simple formulation

I It only considers the forces that give rise to motions

I Give rise to nondynamical symmetries because of the way in which we formulate
the action
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Lagrangian formulation of mechanics

I The action

L(x , ẋ , t) : C → R

and the action is

S =

∫ t2

t1

Ldt.

We need to solve the problem
δS = 0.

I Examples
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Lagrangian formulation of mechanics

I The action

I Examples
Consider the Lagrangian

L(x , y , v̇) =
mv2

2
−mgy

which gives the equations

ẍ = 0

ÿ = −g .
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Lagrangian formulation of mechanics

I The action

I Examples
Consider the Lagrangian

L(x , y , v̇) =
mv2

2
−mgy

Consider

L(r , ṙ) =
1

2
m
[
ṙ2 + r2θ̇2 + φ̇2sin2(θ)

]
− V (r) (1)
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Lagrangian formulation of mechanics

I The action
I Examples

Consider the Lagrangian

L(x , y , v̇) =
mv2

2
−mgy

Consider

L(r , ṙ) =
1

2
m
[
ṙ2 + r2θ̇2 + φ̇2sin2(θ)

]
− V (r) (1)

we get the system of equations

r̈ = r θ̇2 + r sin2 θφ̇2 −
1

m

dV

dr

θ̈ = −
2

r
ṙ θ̇ + sin θ cos θφ̇2

φ̈ = −
2

r
ṙ φ̇− 2 cot θθ̇φ̇

in particular, for θ = π
2

r̈ = r φ̇2 −
1

m

dV

dr

θ̈ = 0

φ̈ = −
2

r
ṙ φ̇
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Lagrangian formulation of mechanics
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Lagrangian formulation of mechanics

Consider a scalar field φ, and the Lagrangian

L(φ, φ̇) =
1

2
gµν (∂µφ) (∂νφ)−

1

2
m2φ2 − V (φ)

RWE-C3-EAFIT



Lagrangian formulation of mechanics

Consider a scalar field φ, and the Lagrangian

L(φ, φ̇) =
1

2
gµν (∂µφ) (∂νφ)−

1

2
m2φ2 − V (φ)

The Euler-Lagrange equations for this field are

∂L
∂φr
−

∂

∂qµ

(
∂L
∂φr,µ

)
= 0

we get
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Lagrangian formulation of mechanics

Consider a scalar field φ, and the Lagrangian

L(φ, φ̇) =
1

2
gµν (∂µφ) (∂νφ)−

1

2
m2φ2 − V (φ)

(
�+ m2

)
φ = −

∂V

∂φ
,

where

� ≡
∂2

∂t2
−∇2
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Lagrangian Formulation on Riemannian Manifolds

I

I

I

I
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Lagrangian Formulation on Riemannian Manifolds

I Let (M, g), (N,G) be Riemannian manifolds, φ ∈ F(M) and ψ : M → N.
The Lagrangian is a function

L : TN →R,

which depends on ψ and ψ;i .

I

I

I

RWE-C3-EAFIT



Lagrangian Formulation on Riemannian Manifolds

I Let (M, g), (N,G) be Riemannian manifolds, φ ∈ F(M) and ψ : M → N.
The Lagrangian is a function

L : TN →R,

which depends on ψ and ψ;i .

I We define the variations of ψ as a one-parameter family of functions ψ(s, x),
where s ∈ (−ε, ε)

I

I

RWE-C3-EAFIT



Lagrangian Formulation on Riemannian Manifolds

I Let (M, g), (N,G) be Riemannian manifolds, φ ∈ F(M) and ψ : M → N.
The Lagrangian is a function

L : TN →R,

which depends on ψ and ψ;i .
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I The integral

I =

∫
D⊂M

Ldvg

is called stationary under a variation of ψ if

dI

ds |s=0

= 0
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Lagrangian Formulation on Riemannian Manifolds

I Let (M, g), (N,G) be Riemannian manifolds, φ ∈ F(M) and ψ : M → N.
The Lagrangian is a function

L : TN →R,

which depends on ψ and ψ;i .

I We define the variations of ψ as a one-parameter family of functions ψ(s, x),
where s ∈ (−ε, ε)

I The integral

I =

∫
D⊂M

Ldvg

is called stationary under a variation of ψ if

dI

ds |s=0

= 0

I If the integral is stationary, then it satisfies the Euler-Lagrange equations on the
manifold

m∑
k=1

(
∂L

∂(ψi
;k )

)
;k

=
∂L
∂ψi
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Lagrangian Formulation for an Elastic Space of Configurations

I

I
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Lagrangian Formulation for an Elastic Space of Configurations

I Let us consider a body manifold B with an atlas (ψi ,Ui ) where B ⊂ Rn and
ψi (Ui ) ⊂ Rn; regard this manifold as the undeformed state of any elastic
medium. Let S be ambient manifold with an atlas (φ(Ui ), θi ) and φ : B → S be
a configuration of B into S.
We can consider the phase space (φt(X ),Txφt(Ui )) for X ∈ Ui and x = φt(X )

I
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Lagrangian Formulation for an Elastic Space of Configurations

I Let us consider a body manifold B with an atlas (ψi ,Ui ) where B ⊂ Rn and
ψi (Ui ) ⊂ Rn; regard this manifold as the undeformed state of any elastic
medium. Let S be ambient manifold with an atlas (φ(Ui ), θi ) and φ : B → S be
a configuration of B into S.
We can consider the phase space (φt(X ),Txφt(Ui )) for X ∈ Ui and x = φt(X )

I After a motion, say φ(X , t) = x + u(x, t), where u is the small displacement
vector field on S, we can see that the strain tensor is given by

εij (x) dx i ⊗ dx j =
1

2

{
φ∗ds(x)2 − ds(x)2

}
,

and after calculations on this expression we get

εij =
1

2
(Lug)ij ,

where (Lug)ij = 1
2

(
gil 5j u

l + glj 5i u
l
)
, are the components of the Lie

derivative of the metric with respect to the displacement vector field.
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Lagrangian Formulation for an Elastic Space of Configurations
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Lagrangian Formulation for an Elastic Space of Configurations

Consider the existence of the following functions and vector fields

I e(x , t), internal energy functional

I ~b(x , t), external force vector field,

I t(x, t, ñ), traction for which exists a two-tensor σ such that
t(x, y, ñ) = σ(x, t) · ñ, where ~n is the normal outward to the manifold at every
point.

Since changes of the metric on the manifold S affect the accelerations of the particles,
the internal energy must depend parametrically on the metric g , and if we have
balance of energy

d

dt

∫
φ(U)

ρ

(
e +

1

2
< ~v , ~v >

)
dv =

∫
φ(U)

ρ < ~b, ~v > dv +

∫
∂φ(U)

< t, ṽ > da,

it can be proved that

σij = 2ρ
∂e

∂g .
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Lagrangian Formulation for an Elastic Space of Configurations

Consider the Lagrangian L : TS → R given by

L(x , ~v) =
1

2
< ~v , ~v > −e(x , t, g),

and the Euler-Lagrange equations

d

dt

(
∂L
∂~vµ

)
=

∂L
∂xµ

.
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Lagrangian Formulation for an Elastic Space of Configurations
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Lagrangian Formulation for an Elastic Space of Configurations
then we have the system of equations

gµia
i = −

(
∂e

∂xµ
+
σij

2ρ
·
∂gij

∂xµ

)
. (2)

If we consider small perturbations, on which Hook‘s law is valid, we can take the
energy functional to be

e(x , t, g) =< Cε, ε >

which clearly depends on the metric; and σ = Cε then we rewrite equation the above
equation as

ρgµia
i = −

(
∂ < Cε, ε >

∂xµ
+

σ

2ρ
·
∂gij

∂xµ

)
, (3)

after some manipulations and the use of Leibnitz‘s rule we have

ρgµia
i = −Cijkl

[
∂

∂xµ

〈
εkl , εij +

gij

2

〉
−

1

2

〈
∂εkl

∂xµ
, gij

〉]
. (4)

Since we are assuming the time invariance of the medium, the causality of the wave
motion is going to be taken into account. Let ω be the time-Fourier parameter for the
field u and denote û(x , ω), ε̂ij the associated fields after Fourier transform on the
time variable, then we have the equation

− ω2ρgµi (x)û + Cijkl
∂

∂xµ

〈
ε̂kl , ε̂ij +

gij

2

〉
−

1

2
Cijkl

〈
∂ε̂kl

∂xµ
, gij

〉
= 0 (5)
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Lagrangian Formulation for an Elastic Space of Configurations
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Lagrangian Formulation for an Elastic Space of Configurations

Since we are interested in a particular direction of propagation, say a geodesic one, in
geodesic coordinates suppose j = 3; we get the following system of equations

−ω2ρgµ3û
3 +

∂

∂xµ

〈
σ̂33, ε̂33 +

g33

2

〉
−

1

2

〈
∂

∂xµ
σ̂33, g33

〉
= 0

−ω2ρgµν û
ν +

∂

∂xµ
〈σ̂ν3, ε̂ν3〉 = 0. v = 1, 2
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I

I
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Further Works

I To perform elastic one-way wave equations on a Riemannian manifold in local
coordinates: Flux “normalization” and subprincipal symbol, self-adjoint form.

I

I
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Further Works

I To perform elastic one-way wave equations on a Riemannian manifold in local
coordinates: Flux “normalization” and subprincipal symbol, self-adjoint form.

I Tensor upward/downward continuation with a Riemannian metric.

I To consider the elastic wave equation for the metric, resulting from the
Einstein-Hilbert action on the manifold S.
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