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Then, we have
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For a 2D scheme, we have
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Take the following FD scheme
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So we obtain the followin discrete equation
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Consider the exact solution to the Riemannian acoustic wave equation as
U(&1,62,t) = Ujy,

and the approximate solution as
u(€r, €2, t) = uy 4.

The Von Neumann criteria states that
evk = Ul —

where a"j’k is the error of the wavefield at (&1, &2, t). Suppose that we can decompose
the error in terms of Fourier modes as
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Inserting this aproximation into the discretized wave equation, we get
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After some simplifications, we get
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Note that in the cartesian case gj; = J;; we have

G =
h =
V4
and then
At < £7
V2

which is the standar Courant stability criteria for FD 2D wave equation in Cartesian
coordinates.
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